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STABILITY OF UNSTEADY MOTION OF A VISCOUS FLUID BAND 

V. K. Andreev UDC 532.516 

A brief derivation is presented in this paper for the small perturbation equations of 
arbitrary unsteady motion of a viscous incompressible fluid subjected to the action of surface 
forces. The stability of a viscous fluid band is studied on the basis of the equations ob- 
tained. 

I. PERTURBATION EQUATIONS 

We assume that the functions u(x, t), p(x, t) are the velocity vector and pressure of a 
certain unsteady motion of a viscous incompressible fluid. The motion is defined in a domain 
gtC R 3 with boundary F t . Within ~t' the u, p satisfy the Navier--Stokes equations 

ut + u . v u  + (l/p)Vp = vAu + g ~ ,  t); ( 1 .1 )  

d i v u  = 0 ,  x ~ Q t ,  t ~ O ,  (1 .2)  

and on F t the conditions 

~o --  p)n + 2pvD(u)n = 26Hn; (1 .3)  

/~ + u . v / =  0, x ~ rt ,  t ~ 0 ,  ( 1 . 4 )  

where v > 0, 0 are the constant viscosity and density, n is the unit vector of the external 
normal to F ; ~ > 0 is the surface tension coefficient, D is the strain-rate tensor with ele- 
mentsDij = ~ui/~x j + ~u./~xi)/2 (i, j = i, 2, 3); H is the mean curvature of the surface F t 
(it is considered that H j> 0 if F t is convex within the fluid; po, g are the given external 
pressure and the mass force vector. Condition (1.3) expresses the equality of all forces act- 
ing on the free boundary while (1.4) denotes that F t consists of the same particles (the equa- 

tion f(x, t) = 0 gives the free boundary Ft). 

At the initial instant 

O~l~=o = ~,  ul~=o = Uo~), rth=o = r ( 1 . 5 )  

and the consistency conditions are satisfied 

div Uo = 0~ ~.D(uo)n = 0,: ( l .6) 

where T is an arbitrary vector tangent to F. 

Let us note that for ~ = 0 the question of single-valued solvability of the problem posed 

is resolved affirmatively in [i], where u, p, and F t belong to certain Holder classes (see 

[2] also). 

Let the solution u(x, t), p(x, t) of the Navier--Stokes equations satisfying (1.3) and 
(1.4) on Ft, the initial conditions (1.5) and the consistency conditions (1.6) be known in the 
domain ~ . If (~i, ~2) § x(~1, ~i, t)It- o is the parametric assignment of the initial surface 
F~ C 3 w~ile the velocity vector u is a sufficiently smooth function, then [3] it can be con- 

sidered that even F t is parametrized by the same parameters (~, ~2): x = x(~, ~2, t). 

Let us consider another solution u, p in the domain ~t with the initial field uo = Uo + 
Uo, div Uo~ = 0. Let x = x + X(x, t), X is the fluid particle displacement vector, Xlt= o = O, 

such that ~tlt=o = ~" We set 
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U, P~, F are perturbations of the fundamental solution. Using the methods of [3], we can show 

that in a linear approximation 
r 

a_~ + VP~ = vAU; dt + ~ U +  

div X = O; 

where d/dt = 3/3t + u*V. 
verifiable identity 

Eq. 

dX O(u) 
d__y = b - ~ X  + U, x ~ ~2~; 

x r,, 
dt 

By virtue of div u = 0, and taking account of (1.9) 

[o(x) u O(u) div to--~- - -  ~ X] = u. V (div X) - -  X. V (div u) 

(1.8) is equivalent to the equation 

div U = 0. 

In contrast to an ideal fluid, condition (1.3) has a vector form. 

(1 .7 )  

(1.8) 

(1 .9)  

(l.lO) 

and the easily 

(1.8) ' 

Under our assumptions 
relative to the surface F, the triple of vectors n, x~, x~2 forms a local basis which is 
generally not orthogonal, where the vectors xa~, xa2 are on a plane tangent to Ft. Conse- 
quently, (1.3) is equivalent to three scalar equations 

Po - -  P + 29vD(u)n'n ---- 2~H; (1.  I1)  

D ( u ) n . x ~ ' = 0 ,  i = t , 2 .  (1 .12 )  

Let us set X IFt = Rm + X~, where X~ is in a plane tangent to F t . Writing the equalities 
(i.ii) and (1.12) in the perturbed solution and linearizing, we obtain on Ft' 

[ Op. OD(u) O" { i i " ] --  P~ + 2 p ~ D ( U ) n ' n  = L - ~ - - -  2 9 v ' - ~ - n ' n  + .~'-~" +--~-) 3t{ + ~Ar,R; ( 1 . ! 3 )  
\ 1  - - ~ /  

D (U) n.x=~ + OD(u)__7 it. x~i/{ + D (u) n.nBc~ i + D (u) S.xcq = 0 ,  i =1 ,2 .  (1 .14)  

Here D(u) and D(U) are strain rate tensors of the fundamental and perturbed flows, RI, R2 
are the principal radii of curvature of normal sections of the unperturbed surface Ft; AF~ is 
the Laplac~-Beltrami operator of the surface F t . The vector S is defined by means of th~ 
equality 

(1.15) EG-- F t \  2 . 

E, G, and F are coefficients of the first quadratic form of Ft, S*n = 0. The derivative with 
respect to the normal 3D(u)/3n is a matrix with the components [3(3ui/3x j + ~uj/3xi)/3n]/2 
(i, j = I, 2, 3). 

The relationships (1.13) and (1.14) are derived by long calculations using differential 
geometry formulas. We omit these calculations. 

The initial conditions 

Uit=o ~ U o ,  ~v U o = 0 ,  Fi~= o =F o, XI~= e ~0 (1o16) 

must be given for a complete definition of the perturbed motion. 

Thus, the evolution of the perturbations is described by (1.7)-(1.9) with the boundary 
conditions (i.i0), (1.13), (1.14) and the initial data (I.16). 
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The behavior of the perturbed so!utionfor t § ~ or of other singular points is of inter- 

est in stability problems. Ordinarily the behavior of the boundary perturbations along the 
normal described by the function R(x, t) = n.X, x ~F t is ordinarily of interest. It should 
be noted that the classical approach to the stability problems of stationary flows, for which 
solutions of the form (U(x), P(x)) exp (lt) are sought, is not appropriate for nonstationary 
flows since the perturbation equations obtained are not invariant with respect to a shift in 
time. In such cases the ordinary tendency is to separate out the space variables. The stabil- 
ity of one specific viscous fluid flow is investigated below. 

2. TRANSFORMATION OF THE PERTURBATION EOUATIONS IN THE CASE OF A 
STRIP 

The following is one of the exact solutions of the Navier--Stokes equations (I.i) and 
( l . 2 ) .  

k 
u = t + k-----F (x,  - -  y)," k = c o n s t ,  

P ----- --Pk~(l A- k t ) - i Y  2 -t- 9k2/2(1 + kt )  -4  - -  2p'~k(l -t- k t ) ,  l = const > 0. (2.1) 

It is easy to confirm that it satisfies the conditions (1.3) (1.4) and (i 6) if the lines 
y = -+l(l + kt) -I are taken on F t . For k > 0 and t + ~, the strip transforms into the line 
y 0. Since the free boundaries are straight lines, surface tension does not enter into the 
solution. 

The motion defined by (2.1) is planar. We also limit ourselves to plane perturbations 

in the stability problem. 

We have D(u) = k(l + kt) -I diag (i, --i), S = --Rx(l , 0), AFtR = Rxx , n = (0,--i). We in- 
troduce new independent dimensionless variables and functions 

= l + k t ,  ~ ---- x / z l ,  ~l = Y~/l ,  U = " r U j k l ,  V = U J k l ~ ,  P = P1/,okil  2 

(the variables ~, ~ are Lagrange coordinates). Taking account of the formulas and the replace- 
ments obtained, the linearized problem (1.7)-(1.9), (i.i0), (1.13), (1.14) and (1.16) is con- 
verted to the following for the fundamental motion (2.1): 

L U ;  (2.2) 

V~ + P;~ = R-~ LV; (2.3) 

U~+-~4Vn = 0 ,  [ ~ l l < l ,  T>~t; (2.4) 

We D ~-r2 R +  7 1 ~ ;  (2.5) --P+ n.eTiVn=--  

4 -I-(Un+V~)---~i-R~=O, n=+__l,  ~ > 1 ;  (2.6) 

U = ULo(~,  rl), V = U2,o (g, 'q), OU~,o/O~ + OU2,o/&] = 0 ~  T = t .  ( 2 . 7 )  

Here Re = kLi/v is the Reynolds number, and We = u(pki~3) -1 is the Weber number. The normal 

component of the perturbation vector of the strip boundaries is determined by the equality 

R = _+-{- ,1 = --4- t, T ~  t. (2.8) 

1 

The problem (2.2)-(2.8) can be reduced to determining just the one function V(~, ~, z) 
as follows. Differentiating with respect to ~, i] in (2.2) and (2.3) and using the continuity 

equation (2.4), we find 

0 0-7 (g~ + "dV,m) t L Re (V~ + r,4V,qn), [ ~1 [ < 1. ( 2 . 9 )  

Taking of (2.8) we rewrite the boundary conditions (2.6) in the form 

T 

___(V~ ~4Vnn)_ 4 fTiV~dT=0 ' ~1----+,1. (2.10) 
I 
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Furthermore, differentiating (2.5) twice with respect to { and replacing P6~ from (2.2) and 
U~ from (2.4), we obtain 

i ] �9 We ~-~eL (~VQ --  ~-~ (~'V~) + -E-E V~r -+- - -  ~eV~d~ § 7 -  ~ V ~ d ~  , ~l = ~ t .  ( 2 .11 )  
1 1 

I f  t he  f u n c t i o n  V ( ~  q, ~) i s  known as a s o l u t i o n  o f  the p rob lem o f  ( 2 . 9 ) - ( 2 . 1 1 )  w i t h  the  
i n i t i a l  da ta  U z . o ( ( ,  q ) ,  then  the  b e h a v i o r  o f  t he  p e r t u r b a t i o n s  o f  the  s t r i p  f r e e  b o u n d a r i e s  
is determined from (2.8). 

3. CONSTRUCTION OF THE SOLUTION AND ITS ASYMPTOTIC ANALYSIS 

The variables (q, ~-), ~ separate in the problem (2.9)-(2.11). We shall consider the 
function V periodic in ~ with period h. For one harmonic we set V = ~(q, r) exp (in~), n = 
n~,~/h, nl = i, 2, ... and we introduce the new function ~(~, ~) by the equality 

T = ~ -- n~(D. (3. I) 

Here P satisfies the one-dimensional heat conduction equation 

i n ~ " T~ = E~ T~T~ -- - - ~  ~. (3.2) 

This results from (2.9). In terms of the functions ~)(q,  ~), ~(q, ~) the boundary conditions 
(2.10) and (2.11) take the form 

T + 2 n 2 ~  = 4n~ ~ ' ~ r  r I = __+ t: ( 3 . 3 )  
17 8 J 

1 

where 

T 2 O . 4.-r. ~' 2%'2n~ 2 ,-r. 
ff~ ~ n  - -  -g~ ('~ Wn) - -  --ffiT U' n = +--- q ('O ~2(DdT, I1 = _-=-~1, 

q('O = 2n2/~a + ntWe/'~K 

(3 .4 )  

( 3 . 5 )  

Let 

�9 1~=1 = ~1(~ ) ,  ~ h ~ = - ~  = ~2(~ ) ,  ~ 1 ~ = ,  ~ o ( ~ )  = Y~ .o~  - n ~ U ~ , o .  ( 3 . 6 )  

Then the first initial-boundary value problem (3.2), (3.6) uniquely determines the function 
P(n, T) = P(q, T, Po, ~i, $i). Then ~(q, T) = ~(q, T, Po, P~, P2, CI, C2) is found[ from (3,1) 
with the unknown functions CI(T), C2(T). Substitution into the boundary conditions (3.3), 
(3.4) results in a system of four integrodifferentiai equations to determine the unknown func- 
tions. The func.tion PI(T), ~2(T), CI(T), C2(r The function ~(q, ~) is thereby found, mean- 
ing also the amplitude of the normal component of the perturbation vector Rn~(r ) = R exp 
(--in~) from (2.8). 

Let us note the following property of the formulated problem that results from the bound- 
ary conditions (3.3), (3.4) and the solution of the mixed problem (3.2), (3.6): it is possible 
to limit onself to seeking just even or odd solutions in the variable q. Since from (3.1) 

= ' ~ ( ~ ) c h - ~ - -  ~ 
0 

for even perturbations it is necessary to set CI(T) = 0, ~(T) = ~2(~), U2.o(q) = U2.o(--q), 
and for odd C2(~) = 0, PI(T) = --~2(T), U2.o(~) = --Uz.o(-~Q). It is sufficient to take the 
boundary conditions (3.3), (3.4) for q = 1 here. 

It can be shown that for odd perturbations the function ~(q, T) has the form 

[ ] (3 ~ 8 )  
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and for even 

where 

~F exp(n~/Re'~) >_.] (2m 
ra~0 

v q 
+ ~) ~ ( -  :)",f/2.,+, ( ~ , -  ~) ~ (,)d~, + d~/,~+, (~)j ~o~ (2,~ + ~) an, 

O 

1~(?) = exp  (--,n~n'~?14),: ? = (x ~ - -  t ) /3Re~,  

w(T ) == exp [---n~/Re :(~')I~F~(~(?)), 

(3 .9 )  

(3.10) 

c m , d m are Fourier series coefficients of the odd or even initial function exp (--n2/Re)~o(D) 

It is convenient to introduce a new unknown function 

! 
(3 .11 )  

in place of the function Cz(T) (or C2(T)). Substitution of the expressions (3.8), (3.9), 
(3.11) into (3.3), (3.4) results after sufficiently awkward calculations in expressions with 

B(T), It(r). For odd perturbations we have the system 

q(~)B=~c th2~ ,  T , - - n f c t h  ~-2~L. B'~ -:  2'~s " n ~ ' - - 2 n  K-(~,?--~t )  w(9)d~+O-(~) ;  ( 3 . 1 2 )  

vf l = _2n2(B/.c~), (3.13) 

where 

K -  (I:, y --  It) = exp (he~Be'r) ~ mA~ (T) /2m (? -- ~t), 
~.=:I. 

c o  

Q- (~) = exp (n~/Re x) ~] (-- i)'/.A,~ (~) 1~,~ (?) c,~, 

2 n 2 m ~ ( $  2 ' 2 z  3 ) 
A~ (~) = n2 + mo.a2x4 ~ee + n2 + m2a2~4 " 

For even perturbations we obtain 

t 3 

q(~)B=~e:th n' ( n B, ) 2n n B' -~- 1F.1-- n th "~" --R-'~7 th  ~ -  - -  
? 

n J" K + (T, y -- la) w (~) d~t -- Q§ (x); 
0 

: i l l  = - - 2 n 2 ( B / ~ 2 ) "  , 

where 

K + ( ~ , ?  tx)=exp(n~/Re~) ~_~ (2m + i)D~(~)f2,n+l(?--Ix), 
Tct~O 

O + (T)'= exp (ne/Ne ~) (-- i) ~ Dr~ (z) f2m+l (?) dr,, 
;q/=O 

[ ' ] �9 4n ~ (2m § t )~  ~2 8~  
D~ (~) = 4 ~ 7  ( T , , ~ 7 ~ ? ~ .  ~ + 4.~ + (2., + ~;' ~ . '  " 

(3.14) 

(3.15) 

The functionsq(T), fm(y), w(T) are here determined from (3.5) and (3.10) while y = (T 3 -- 
l)/3Re. According to (2.8) and (3.11), the amplitude of the normal perturbation vector com- 

ponent has the form Rnl = B(T)/T, nl = i, 2, ... 

It can be shown that as T + ~ the system (3.12), (3.13) and (3.14), (3.15) reduces to a 

system of three ordinary first-order differential equations with irregular singularities. 
This system is inhomogeneous and the rank of its singularity T = ~ is three [4]. We present 
here the principal terms of the asymptotic of the function Rn1(Z). For odd perturbations for 

all ~ > 0 
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m 2 2 a~ a S (--I) n R e c ~  [ m n  ~ 
(3.16) 

if c. = 0, i = I, ..., m -- i. The behavior of the even perturbations depends on the surface % 
tenslon o. Namely, for ~ = 0, T § 

while for ~ > 0, T + 

% Re ( - -  i)  d~, (2~n + f) 2 ~ 
-----7"TT~,~" T- exp T ~ (3 .17)  / /n~ N a lT  4- ~-7" 3 (2m d- t)  ~ ~ t2  Re - ' 

, 8 4 n ~ R e ( - - t ) m d m  r ( 2 m +  t ) 2 n  ~ ~]] 
Bh""vi/4{a~cos(2n]/W--ee~) + a~sin(2n/~e~) -- n]/~(Zm+ i)~5~/4 exPL 12T---~ j~, (3.!8) 

if d i : 0, i = 1 .... , m -- I; m = 0, I, ... The ~ a2 in (3~ are constants. 

Deductions about the flow stability of the strip (2.1) as t § ~(T + =) can be made on 
the basis of the asymptotics (3.16)-(3.18). The odd perturbations are stable, where the ini- 
tial perturbations damp out exponentially. It is interesting to note that in the ideal fluid 
scheme analogous vortical initial data destabilize the free boundary [5]. This deduction does 
not contradict that expressed above since the asymptotic (3.16) is not uniform in "0 as T § 
(or equivalently, Re), when v § 0 (Re § ~). Even perturbations always grow, as follows from 
(3.17) and (3.18), although the surface tension reduces the instability somewhat without elim- 
inating it completely. 

Thus, even velocity perturbations along the y axis are most dangerous. The so-called 
"hose-like instability" corresponds to them. 

In conclusion we note that as T § 0 (t § --i/k, k < 0 stability Rnl ~ aT, a = const. 
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